
PC Keyboard Theory

The IBM keyboard you most probably have sitting in front of you, sends
scan codes to your computer. The scan codes tell your Keyboard Bios, what
keys you have pressed or released. Take for example the 'A' Key. The 'A'
key has a scan code of 1C (hex). When you press the 'A' key, your
keyboard will send 1C down it's serial line. If you are still holding it down, for
longer than it's typematic delay, another 1C will be sent. This keeps
occurring until another key has been pressed, or if the 'A' key has been
released.

However your keyboard will also send another code when the key has been
released. Take the example of the 'A' key again, when released, the
keyboard will send F0 (hex) to tell you that the key with the proceeding scan
code has been released. It will then send 1C, so you know which key has
been released.

Your keyboard only has one code for each key. It doesn't care it the shift key
has been pressed. It will still send you the same code. It's up to your
keyboard BIOS to determine this and take the appropriate action. Your
keyboard doesn't even process the Num Lock, Caps Lock and Scroll Lock.
When you press the Caps Lock for example, the keyboard will send the
scan code for the cap locks. It is then up to your keyboard BIOS to send a
code to the keyboard to turn on the Caps lock LED.

Now there's 101 keys and 8 bits make 256 different combinations, thus you
only need to send one byte per key, right?

Nop. Unfortunately a handful of the keys found on your keyboard are
extended keys, and thus require two scan code. These keys are preceded
by a E0 (hex). But it doesn't stop at two scan codes either. How about
E1,14,77,E1,F0,14,F0,77! Now that can't be a valid scan code? Wrong
again. It's happens to be sent when you press the Pause/break key. Don't
ask me why they have to make it so long! Maybe they were having a bad
day or something?

When an extended key has been released, it would be expect that F0 would
be sent to tell you that a key has been released. Then you would expect E0,
telling you it was an extended key followed by the scan code for the key
pressed. However this is not the case. E0 is sent first, followed by F0, when
an extended key has been released.

Keyboard Commands

Besides Scan codes, commands can also be sent to and from the keyboard.
The following section details the function of these commands. By no means
is this a complete list. These are only some of the more common
commands.

Host Commands

These commands are sent by the Host to the Keyboard. The most
common command would be the setting/resetting of the Status
Indicators (i.e. the Num lock, Caps Lock & Scroll Lock LEDs). The
more common and useful commands are shown below.

ED Set Status LED's - This command can be used to turn on
and off the Num Lock, Caps Lock & Scroll Lock LED's.
After Sending ED, keyboard will reply with ACK (FA) and
wait for another byte which determines their Status. Bit 0
controls the Scroll Lock, Bit 1 the Num Lock and Bit 2 the
Caps lock. Bits 3 to 7 are ignored.

EE Echo - Upon sending a Echo command to the Keyboard, the
keyboard should reply with a Echo (EE)

F0 Set Scan Code Set. Upon Sending F0, keyboard will reply
with ACK (FA) and wait for another byte, 01-03 which
determines the Scan Code Used. Sending 00 as the
second byte will return the Scan Code Set currently in
Use

F3 Set Typematic Repeat Rate. Keyboard will Acknowledge
command with FA and wait for second byte, which determines
the Typematic Repeat Rate.

F4 Keyboard Enable - Clears the keyboards output buffer,
enables Keyboard Scanning and returns an
Acknowledgment.

F5 Keyboard Disable - Resets the keyboard, disables Keyboard
Scanning and returns an Acknowledgment.

FE Resend - Upon receipt of the resend command the
keyboard will re- transmit the last byte sent.

FF Reset - Resets the Keyboard.

Commands

Now if the Host Commands are send from the host to the keyboard,
then the keyboard commands must be sent from the keyboard to
host. If you think this way, you must be correct. Below details some of
the commands which the keyboard can send.

FA Acknowledge

AA Power On Self Test Passed (BAT Completed)

EE See Echo Command (Host Commands)

FE Resend - Upon receipt of the resend command the Host
should re-transmit the last byte sent.

00 Error or Buffer Overflow

FF Error or Buffer Overflow

Scan Codes

The diagram below shows the Scan Code assigned to the individual keys.
The Scan code is shown on the bottom of the key. E.g. The Scan Code for
ESC is 76. All the scan codes are shown in Hex.

As you can see, the scan code assignments are quite random. In
many cases the easiest way to convert the scan code to ASCII would
be to use a look up table. Below is the scan codes for the extended
keyboard & Numeric keypad.

The Keyboard's Connector

The PC's AT Keyboard is connected to external equipment using four wires.
These wires are shown below for the 5 Pin DIN Male Plug & PS/2 Plug.

5 Pin DIN

1. KBD Clock
2. KBD Data
3. N/C
4. GND
5. +5V (VCC) PS/2

1. KBD Clock
2. GND
3. KBD Data
4. N/C
5. +5V (VCC)
6. N/C

A fifth wire can sometimes be found. This was once upon a time
implemented as a Keyboard Reset, but today is left disconnected on AT
Keyboards. Both the KBD Clock and KBD Data are Open Collector bi-
directional I/O Lines. If desired, the Host can talk to the keyboard using
these lines.

Note: Most keyboards are specified to drain a maximum 300mA. This will
need to be considered when powering your devices

The Keyboard's Protocol

Keyboard to Host

As mentioned before, the PC's keyboard implements a bi-directional
protocol. The keyboard can send data to the Host and the Host can send
data to the Keyboard. The Host has the ultimate priority over direction. It can
at anytime (although the not recommended) send a command to the
keyboard.

The keyboard is free to send data to the host when both the KBD Data and
KBD Clock lines are high (Idle). The KBD Clock line can be used as a Clear
to Send line. If the host takes the KBD Clock line low, the keyboard will
buffer any data until the KBD Clock is released, ie goes high. Should the
Host take the KBD Data line low, then the keyboard will prepare to accept a
command from the host.

The transmission of data in the forward direction, ie Keyboard to Host is
done with a frame of 11 bits. The first bit is a Start Bit (Logic 0) followed by 8
data bits (LSB First), one Parity Bit (Odd Parity) and a Stop Bit (Logic 1).
Each bit should be read on the falling edge of the clock.

The above waveform represents a one byte transmission from the
Keyboard. The keyboard may not generally change it's data line on the
rising edge of the clock as shown in the diagram. The data line only has to
be valid on the falling edge of the clock. The Keyboard will generate the
clock. The frequency of the clock signal typically ranges from 20 to 30 Khz.
The Least Significant Bit is always sent first.

Host to Keyboard

The Host to Keyboard Protocol is initiated by taking the KBD data line low.
However to prevent the keyboard from sending data at the same time that
you attempt to send the keyboard data, it is common to take the KBD Clock
line low for more than 60us. This is more than one bit length. Then the KBD
data line is taken low, while the KBD clock line is released.

The keyboard will start generating a clock signal on it's KBD clock line. This
process can take up to 10mS. After the first falling edge has been detected,
you can load the first data bit on the KBD Data line. This bit will be read into
the keyboard on the next falling edge, after which you can place the next bit
of data. This process is repeated for the 8 data bits. After the data bits come
an Odd Parity Bit.

Once the Parity Bit has been sent and the KBD Data Line is in a idle (High)
state for the next clock cycle, the keyboard will acknowledge the reception
of the new data. The keyboard does this by taking the KBD Data line low for
the next clock transition. If the KBD Data line is not idle after the 10th bit

(Start, 8 Data bits + Parity), the keyboard will continue to send a KBD Clock
signal until the KBD Data line becomes idle.

