
 2010 Microchip Technology Inc. DS01310A-page 1

INTRODUCTION

Microchip’s enhanced Flash microcontrollers enable
firmware to program itself. This is done by a “boot-
loader” providing a firmware kernel, residing in the
microcontroller. The kernel uses a small portion of pro-
gram memory not normally used by the firmware’s
main application.

When the bootloader firmware is activated, a host PC
can use a serial protocol to read, write and verify
updates to the microcontroller's application firmware.
Once the application firmware is programmed, the
bootloader cedes control, allowing normal application
execution until the bootloader is called.

AN1310 Bootloader Features

The key features of the AN1310, “High-Speed Serial
Bootloader for PIC16 and PIC18 Devices” include:

• Small firmware code size (less than 450 instruction
words on most devices)

• Automatic baud rate synchronization to the host

• Baud rate flexibility, from 1,200 bps to 3 Mbps for
extremely fast programming

• A 16-bit CRC packet and Flash memory
verification for quick verification of successful
programming, even at low baud rates

• An advanced “write planner” that eliminates
unnecessary erase/write transactions

• Support for a wide variety of PIC16 and PIC18
devices through an “essential device characteristics”
database

• Optional application remapping that does not
require linker script modifications or remapping of
interrupt service routines

• A forced bootloader re-entry mechanism requiring
minimal start-up delay and no additional I/O pins or
application firmware code to re-enter the bootloader

• Optional MCLR Reset control, allowing the host
PC application to automatically reset the device
for robust bootloader re-entry

• PC software rewritten in C/C++ for the cross-
platform, QtSM SDK, enabling Linux host support
by recompiling the PC software source code

• A simple, Serial Terminal Application mode,
provided by the PC software, that eliminates time
wasted by switching between separate bootloader
host and serial terminal applications

Prerequisites

Before using the serial bootloader, the following is
required:

• Familiarity with Configuration bits, compiling and
programming PIC® microcontrollers

• A development board with a serial port connected
to the PIC device's USART1 RX/TX pins

• A PC with a serial port or USB-to-serial adapter

• A traditional programming tool for initially writing
the bootloader firmware into the PIC device (such
as REAL ICE™ emulator, PICkit™ 3 or MPLAB®
ICD 3)

• Installation of the MPLAB® IDE software

• Installation of the AN1310, high-speed serial
bootloader software

The AN1310 high-speed serial bootloader software
package (including full source code) can be down-
loaded from the www.microchip.com/applicationnotes
web site.

1. When the Browse Application Notes page appears,
go to the Select a Function menu and select
“Bootloader” under “Programming & Bootloaders”.

2. Click the Search button.

3. Scroll down to AN1310 and click the compressed
file icon in the “Resource Type” column.

Author: E. Schlunder
Microchip Technology Inc.

Note: If a review of the preceding features list
indicates that a different bootloader is
needed, see “Alternative References”.

AN1310
High-Speed Serial Bootloader for PIC16 and PIC18 Devices

http://www.microchip.com/applicationnotes
http://www.microchip.com/applicationnotes

AN1310

DS01310A-page 2 2010 Microchip Technology Inc.

IMPLEMENTATION BASICS

This section gives the three basic steps for setting up
and using the bootloader for those already familiar with
bootloader/application development.

Subsequent sections provide overview and more
detailed information relating to these steps. Those
sections include:

• “Firmware Overview”

• “Hardware Considerations”

• “Bootloader Mode Considerations”

• “Application Mode Considerations”

• “Software Design”

Step 1:
Compile and Program Bootloader
Firmware

More detailed information on this step is provided in:

• “Firmware Overview”

• “Hardware Considerations”

• “Bootloader Mode Considerations”

• “Software Design”

By default, the serial bootloader installation provides
bootloader firmware source code in the PC path:

FIGURE 1: CONFIGURATION BITS DIALOG BOX

To compile and program the bootloader firmware:

1. Open the appropriate PIC16 or PIC18 bootloader
project in the MPLAB IDE software.

2. Select Configure>Select Device... and choose
the PIC device to be used (for example,
PIC18F87J90).

3. To specify Configuration bit settings, select
Configure>Configuration Bits....

The dialog box, shown in Figure 1, appears.

4. Specify settings for each category.

Table 1 gives suggestions for selected bits that
can get the bootloader initially working.

5. Compile and program the bootloader firmware
into the microcontroller.

The bootloader must be programmed into the
PIC device using an ICSP™ programming tool,
such as MPLAB® ICD 3 or a socketed program-
mer like the MPLAB PM3 Universal Device
Programmer.

C:\Microchip Solutions\Serial
Bootloader AN1310 vX.XX\PICxx Bootloader\

TABLE 1: CONFIGURATION BIT
SUGGESTIONS

Category Setting

Watchdog Timer(1) “Disabled”

Extended Instruction
Set Enable bit

“Disabled”

Oscillator Selection
bits

(Select according to hardware.
Higher speeds generally
enable more baud rates.)

Fail-Safe Clock
Monitor Enable bit

“Enabled”, if available

Low-Voltage
Program (LVP)

“Disabled”, if applicable

Table Read-Protect “Disabled”, if applicable

Note 1: On most PIC devices, the Watchdog Timer
can be re-enabled in application firmware
after start-up.

 2010 Microchip Technology Inc. DS01310A-page 3

AN1310

Step 2:
Connect Host to Bootloader

1. Open the serial bootloader host PC software
(AN1310ui.exe).

2. If this is the initial setup, configure the serial port
and bootloader baud rate by selecting
Program>Settings.

The dialog box in Figure 2 appears.

FIGURE 2: SETTINGS DIALOG BOX

3. Select values for the “COM Port” and
“Bootloader Baud Rate” fields and click OK.

Using a moderate speed “Bootloader Baud
Rate”, such as 19.2 kbps, may help with initial
communications. Non-standard, high-speed
baud rates can be attempted once everything is
working.

The software allows serial communication with
application firmware after programming. Appli-
cations can require a particular baud rate, so a
separate “Application Baud Rate” setting is pro-
vided. For the example application firmware
projects, the 115,200 bps rate is suggested.

4. Connect the PC's serial port to the PIC MCU
development board.

5. Go into “Bootloader” mode on the PC by clicking
the red bootloader software button, shown in
Figure 3, or pressing the PC’s <F4> key.

The PC software attempts to communicate with
the PIC bootloader firmware, using the specified
bootloader baud rate. If communications are
established, the PC displays the bootloader
firmware revision and the PIC device’s
information, as shown in Figure 3.

FIGURE 3: SERIAL BOOTLOADER HOST PC APPLICATION

Bootloader Firmware Version

PIC® Device’s Information

Bootloader Baud Rate

“Bootloader Mode” Button

AN1310

DS01310A-page 4 2010 Microchip Technology Inc.

Step 3:
Program Application Firmware

More detailed information on this step is provided in:

• “Application Mode Considerations”

• “Software Design”

Once the host PIC is connected to the bootloader, the
PIC device can be read, written, erased or verified. A
sample application firmware project is installed with the
software in the path:

1. Open the appropriate project in the MPLAB IDE
software, select the desired device, configure
the settings and compile the application
firmware.

2. Open the resulting application firmware’s hex
file with the host PC’s serial bootloader
software.

3. Write the application firmware into the PIC
device by clicking the software button with the
red down arrow or by pressing the PC’s <F6>
key.

4. Direct the bootloader to start the application
firmware by clicking the software’s green “Run
Mode” button or pressing <F2> on the PC.

In this mode, the PC software acts as a simple
serial terminal application, as shown in Figure 4.
This allows two-way text communication with
the application firmware through the PIC
device's USART1 port.

FIGURE 4: APPLICATION RUN MODE

FIRMWARE OVERVIEW

There are two modes of firmware operation: bootloader
and application. When the microcontroller comes out of
Reset, the bootloader start-up routine decides whether
to enter the bootloader command loop (Bootloader
mode) or jump to the application entry point vector
(Application mode).

With no intervention, the Bootloader mode is entered if
either of the following conditions apply. If these
conditions do not apply, the Application mode is entered:

• If application firmware code has not been pro-
grammed into the microcontroller, the Bootloader
mode is entered.

• If the PIC device’s RX pin is at logic level low (the
RS-232 “Break” state) when the microcontroller
comes out of Reset, Bootloader mode is entered.

Bootloader mode also can be entered manually or
automatically through software or hardware.

Manual Break and Reset for Re-Entry

The host PC software enables the PIC device's RX pin
to be put into the RS-232 “Break” state. This holds the
PIC device's RX pin low, forcing the microcontroller into
Bootloader mode when it is reset.

To manually enter Bootloader mode:

1. Click the software’s blue “Break/Reset Mode”
button, shown in Figure 5, or press the PC’s
<F3> key.

FIGURE 5: BREAK/RESET MODE

2. Reset the PIC device (so that the bootloader
start-up routine is executed) by doing one of the
following:

• On the development board, press the
MCLR Reset button, shown at right

• Disconnect and reconnect the power

The device resets and the bootloader start-up
routine notices the “Break” request on the RX
pin. Bootloader mode is entered, even if applica-
tion firmware has been programmed into the
device.

3. Connect to the bootloader on the PC by clicking
the software’s red “Bootloader Mode” button,
shown in Figure 6, or pressing the PC’s <F4>
key.

C:\Microchip Solutions\Serial
Bootloader AN1310 vX.XX\PICxx Application\

Status

Application Baud Rate

“Run Mode” Button
“Break/Reset Mode” Button

 2010 Microchip Technology Inc. DS01310A-page 5

AN1310

FIGURE 6: “BOOTLOADER MODE”
BUTTON

The PC software attempts to communicate with the
bootloader using the bootload baud rate. If successful,
the PC receives the bootloader firmware revision and
the PIC device information, shown earlier in Figure 4.

Software Bootloader Re-Entry

The preceding procedure for manually executing the
re-entry sequence can be cumbersome when making
many incremental application firmware changes during
development. An easier alternative is to use the simple
software re-entry mechanism, given in the example
application firmware project.

That mechanism is shown in Example 1.

EXAMPLE 1: SOFTWARE BOOTLOADER
RE-ENTRY

This code continuously monitors the USART module’s
state for a framing error. When a framing error occurs,
the code verifies that the RXD pin is being held at a
logic low level, indicating that the host PC is most likely
transmitting an RS-232 Break state to request boot-
loader re-entry. The application responds by initiating a
software Reset of the microcontroller and passing
control to the bootloader start-up routine.

PIC16 microcontrollers, however, have no software
Reset instruction, so the application jumps to the boot-
loader start-up vector at address, 0h. To avoid leaving
unremovable return addresses on the call stack, jump-
ing to address 0h must be done only from the
application’s “main()” function.

Hardware Bootloader Re-Entry

The software re-entry procedure is useful for getting
started, but is not recommended for robust operation.
Should the application code have bugs, the application
firmware could lock up and prevent automatic
bootloader re-entry for the next code change.

Additionally, an actual framing error, triggered during
normal application serial communications, could
inadvertently cause unintended re-entry into Boot-
loader mode. Then, the application could not be
restarted without user intervention.

For a more robust, hardware-based bootloader re-
entry, the serial port RTS signal can be wired to control
the PIC device’s MCLR Reset signal. This allows the
host PC software to automatically assert Break and
Reset signals, as described in “Manual Break and
Reset for Re-Entry”.

while(1)
{
 if(PIR1bits.RCIF)
 {
 if(RCSTAbits.FERR &&
 !PORTCbits.RC7)
 {
 // receiving BREAK

// state, soft reboot
// into Bootloader mode.

 Reset();
 }
 }
 (...)
}

“Bootloader Mode” Button

AN1310

DS01310A-page 6 2010 Microchip Technology Inc.

HARDWARE CONSIDERATIONS

Figure 7 represents a typical connection diagram for
the serial bootloader.

RTS-based MCLR Reset control is optional. When con-
nected, the host PC can use the RTS serial port signal
to pull down the PIC device’s MCLR pin, allowing the
host PC software to automatically reset the device
when entering the Bootloader mode.

If using a PIC device that requires high voltage (above
VDD) on MCLR to enter the In-Circuit Serial Program-
ming™ (ICSP™) mode, the RTS/MCLR diode can
interfere with traditional ICSP programming/debug-
ging. In this case, using an N-channel metal oxide
semiconductor field effect transistor (MOSFET) may be
more appropriate. (See Figure 8.)

An RS-232 transceiver chip typically provides an inter-
nal pull-down resistor on the incoming TXD/RTS sig-
nals. This allows the PIC device to normally see logic
level high on its RX pin (the RS-232 “Idle” state) even
when disconnected at the serial port, DB9 connector.

FIGURE 7: RX PIN SCHEMATIC

FIGURE 8: MOSFET SCHEMATIC

C1

C2

R
1

R2

D1

C1+

C1-

C2+

C2-

11

10

V+
2

V-6

13

8

U2

R3
MCLR#1

RC6/TX25

RC7/RX26

VDD

U1

C5

RTS

0.1F

0.1F

0.1F

0.1F

1
0

 k

+3.3V

GND

+3.3V

MAX3232

470

GND

+3.3V

1

4
5

6

8
9

3

2
7

+

+

+

470

VSS

0.1F

J1

DB9

GND

RXD
TXD

C3

C4

1

3

4

5
11

12

PIC
®

Device

C1

C2

R
1

R2

C1+

C1-

C2+

C2-

11

10

V+
2

V-6

13

8

U2

MCLR#1

RC6/TX25

RC7/RX26

VDD

U1

C5

RTS

0.1F

0.1F

0.1F

0.1F

10
 k

+5V

GND

+3.3V

Q1
2N7002

+5V

1

4
5

6

8
9

3

2
7

+

+

+

470

VSS

0.1F

J1

DB9

GND

RXD
TXD

C3

C4

1

3

4

5
11

12

PIC® Device

R
2

47
0

 2010 Microchip Technology Inc. DS01310A-page 7

AN1310

Entering Application Mode

To ensure the device can reliably enter Application
mode, it is suggested that:

• The device be held in Reset long enough for the
RX pin to be pulled high, signifying the RS-232
“Idle” state

• Data not be transmitted to the microcontroller
during, and immediately after, the device has
come out of Reset

Incoming data could be misinterpreted as an
RS-232 “Break” state, causing the bootloader
start-up routine to enter Bootloader mode.

When using a custom RS-232 transceiver circuit,
ensure that the PIC device’s RX pin is pulled up to VDD

when Idle or disconnected from the host PC serial port.
If the PIC device’s RX pin is left floating or pulled down,
Bootloader mode could be erronenously entered.

High-Speed Baud Rates

The bootloader is capable of operating at baud rates of
up to 3 Mbps. Reliably achieving high-speed baud
rates requires some considerations in the hardware
design.

Traditionally, PCs’ serial ports only operate at standard
baud rates of up to 115.2 kbps. Manufacturers of USB-
to-serial converters may claim higher baud rates, but
some incorporate level translator circuits that limit
performance to baud rates of 500 kbps or less.

More reliable, high-speed operation may be provided
by a bare logic level, USB-to-serial converter circuit
wired directly to the PIC device without RS-232 level
translators.

Another hardware design consideration is matching the
PIC device's clock source frequency to the baud rates
available on the host serial port. At high speeds, USB-
to-serial converters may have limited steps between
available baud rates.

As an example, some of the currently available baud
rates for two USB-to-serial converters are shown in
Table 2. (For more information, consult Prolific Tech-
nology Inc. (PL2303), Future Technology Devices
International Limited (FT232BM) or your converter’s
data sheet.)

The PIC device also will have limited steps between
available baud rates, dependent on the FOSC clock
source used and the PIC device’s baud rate formula
(see Table 3).

The bootloader firmware source code automatically
uses the BRG16 = 1, BRGH = 1 mode on microcon-
troller devices that support it. This is the most flexible
mode for hitting the widest range of possible baud
rates.

To avoid miscommunication, the PIC device and serial
port baud rates ideally should match within 3%. If a
CRC error is detected during communications with the
bootloader firmware, the host PC application will halt
and display an error status.

TABLE 2: EXAMPLE HIGH-SPEED,
USB-TO-SERIAL BAUD RATES

PL2303 FT232BM

6,000,000 3,000,000

3,000,000 2,000,000

2,457,600 1,500,000

1,228,800 1,411,765

921,600 1,333,333

614,400 1,263,158

460,800 1,200,000

230,400 1,142,857

1,000,000

750,000

500,000

250,000

TABLE 3: PIC® DEVICE BAUD RATE
FORMULAS

BRG16 BRGH PIC Baud Rate

0 1 FOSC/[16 (BRG + 1)]

1 1 FOSC/[4 (BRG + 1)]

AN1310

DS01310A-page 8 2010 Microchip Technology Inc.

Bootloader Firmware Operation

Figure 9 summarizes the essential operating design of
the bootloader.

Data is received through the USART module and
quickly stored to the RAM buffer to avoid overrun
errors. After each packet is received, the integrity of the
data is verified using a 16-bit CRC.

FIGURE 9: BOOTLOADER
FUNCTIONAL BLOCK
DIAGRAM

When a valid request packet has been received, the
command interpreter evaluates the command number
in the packet to determine what operation needs to be
done (such as Erase, Write, Read or Verify). The
request is fulfilled and a response is returned through
the USART to either Acknowledge completion of the
task, or on Read operations, to send back device
memory data.

The host PC application is not allowed to send more
than one packet at a time. Each packet must be
Acknowledged before the next can be sent. This
maintains flow control.

For detailed bootloader protocol documentation, see
Appendix A: “Bootloader Protocol” on page 19.

PIPELINED READS

This bootloader avoids using the RAM buffer during
device read operations, unlike the original bootloader
document in AN851.

Data read from Flash/EEPROM is streamed directly to
the USART module. This has some key advantages:

• The microcontroller RAM size no longer limits the
response packet size

• An entire device memory range can be read with
a single request transaction, minimizing
transaction overhead

• The processor core and the USART can operate
in parallel (pipelining), reducing total clock time

USART COMMUNICATIONS

The microcontroller's USART module is used to receive
and transmit data. The communications settings are:

• Eight data bits

• No parity

• One Start/Stop bit

• Variable baud rate

An auto-baud routine is used to measure the bit rate of
the initial Start-of-Text character (STX or 0Fh). Unlike
the original bootloader, the auto-baud routine is not run
at the beginning of every packet. Once the baud rate is
successfully captured, it is locked in until the
bootloader command loop receives an invalid or
unexpected request.

Locking the baud rate allows high baud rate data to be
received without losing data during slow auto-baud
calculations. When an invalid or unexpected request is
received, the auto-baud routine is run again.

When switching between baud rates, the bootloader
firmware can get locked at the wrong baud rate and the
incoming data stream may not trigger the auto-baud
routine to be run again. In such situations, a MCLR
Reset is required to force the auto-baud routine to run.

When RTS is wired to control MCLR, such situations
can be handled automatically by the host PC
application asserting a MCLR Reset.

TXRX

Control

Command
Interpreter

RAM
Buffer

Transmit/
Receive
Engine

Bootloader
Firmware

USART

Flash Program
Memory

EE Data
Memory

Configuration
Registers

D
at

a
B

us

 2010 Microchip Technology Inc. DS01310A-page 9

AN1310

BOOTLOADER MODE
CONSIDERATIONS

In the default configuration, bootloader firmware is
stored at the end of Flash program memory space.
Keeping the bootloader at the end of program memory
space allows application firmware to handle interrupts
at the normal hardware interrupt vector address. This
configuration keeps interrupt latency to a minimum.

The host PC bootloader application will write a “GOTO”
as the first instruction at the Reset vector (address,
0000h). This GOTO jumps to the bootloader at start-up.
The application firmware’s original Reset vector
instruction is automatically moved to reside just before
the bootloader block of memory. The bootloader firm-
ware uses this application Reset vector to start the
application when the Bootloader mode is not requested
(see Figure 10).

On PIC18 devices, this automatic relocation of the
Reset vector requires the application firmware to
provide a single GOTO instruction as the first instruction
at address, 0000h.

FIGURE 10: PROGRAM MEMORY

On PIC16 devices, program memory is paged. There-
fore, the PCLATH register needs to be loaded before
executing a far GOTO. The host PC bootloader applica-
tion will write up to four instructions at the Reset vector
(address, 0000h) to jump to the bootloader at start-up.

To make room, the first four application firmware
instructions are automatically moved by the host PC
software to reside just before the bootloader firmware.

Example 2 shows a PIC16 far GOTO code sequence
that will be recognized as a valid application Reset
vector by the software.

Incremental Bootloading

After the PIC device has been programmed, the host
PC application continues to monitor the hex file on the
disk. If the application firmware is modified and
recompiled, the host PC bootloader application will
immediately notice the change. This triggers the host
PC application to do an incremental update of the
device’s firmware.

Incremental updates compare the last programmed
hex file and the new file to determine which bytes of
program memory to change. Only memory blocks with
changes are reprogrammed. When developing large
application projects, this can save significant time and
increase productivity.

Write Protection

To ensure that bootloader firmware is always available
for updating the device, it is wise to write-protect the
bootloader’s block of Flash memory space (the boot
block). This can be accomplished through software or
hardware.

SOFTWARE WRITE PROTECTION

Software-based boot block write protection is enabled
by the USE_SOFTBOOTWP option in the file,
bootconfig.inc. With this feature turned on, the
bootloader firmware checks each erase and write
operation to ensure the affected addresses are outside
of the boot block. Erase/write operations within the boot
block are silently skipped.

Having write access to Configuration bits is very
powerful, but also dangerous. If a design only has
enough hardware for operating from the internal oscil-
lator and accidentally changes the Configuration bits to
use EC mode, all further operation could be prevented,
including Bootloader mode.

Configuration bits can be write-protected in software
with the USE_SOFTCONFIGWP option in the include file,
bootconfig.inc. PIC16 devices do not have
Configuration bit write access.

Application Reset Vector

Application Firmware

0000h

0008h

0018h

Bootloader Reset Vector

High Priority Interrupt Vector

Low Priority Interrupt Vector

Bootloader Firmware

EXAMPLE 2: PIC16 RESET VECTOR
ORG 0

ResetVector:
movlw high(FarApplication)
movwf PCLATH
goto FarApplication

(...)

FarApplication:
(...)

AN1310

DS01310A-page 10 2010 Microchip Technology Inc.

HARDWARE WRITE PROTECTION

Certain PIC18 devices, such as the PIC18F46J11,
provide Configuration bits to allow write protection of
the end of the Flash memory space.

Most devices, however, only provide write protection
from the beginning of the Flash memory space. For
these devices, it will be necessary to locate the boot-
loader at address, 0h, in Flash memory. To do that, use
the #define BOOTLOADER_ADDRESS 0 option in the
bootconfig.inc file.

When located at address, 0h, the bootloader occupies
the hardware Reset and interrupt vector addresses.
For this layout to work, application firmware must
provide remapped Reset and interrupt vectors. The
bootloader firmware will “pass-through” hardware
Reset and interrupt events to the application firmware
at the remapped addresses (see Figure 11).

FIGURE 11: MEMORY, WITH
WRITE-PROTECTED AREA

The bootconfig.inc file defines where the
bootloader firmware looks for the following application
vectors: AppVector, AppHighIntVector and AppLowInt
Vector. To optimize usage of Flash memory for a specific
application, these addresses can be adjusted. For now,
however, leave the addresses at their default values to
maintain compatibility with the example application
firmware projects.

Note: Some PIC devices provide configuration
options that can write-protect application
firmware’s program memory regions.
Write-protected regions will not be
modifiable by the bootloader.

If the pre-existing contents of write-
protected regions do not match the new
data in the application firmware’s hex file,
write protection may prevent the boot-
loader write operation from completing
successfully.

Application Reset Vector

Application Interrupt Vector

Application Interrupt Vector

Application Firmware

0000h

0008h

0018h

0400h

0408h

0418h

Bootloader Reset Vector

High Priority Interrupt Vector

Low Priority Interrupt Vector

Bootloader Firmware

Write-Protected,
“Boot Block” Area

 2010 Microchip Technology Inc. DS01310A-page 11

AN1310

APPLICATION MODE
CONSIDERATIONS

Having bootloader code in Flash memory may require
some changes to application firmware. To facilitate
that, this application note provides software mecha-
nisms and example application firmware projects that
should work “out of the box” on all configurations.

Placing the bootloader firmware towards the end of
Flash memory space should require little or no changes
to application firmware, due to the automatic Reset
vector remapping done by the host PC bootloader
software. Interrupt vectors are handled by application
firmware at the normal hardware interrupt vector
addresses, so no application firmware changes are
required in this design. For an example memory map of
this design type, see Figure 10 on page 9.

If the bootloader code is placed at address, 0h, the
application firmware will have to support remapping of
the hardware Reset and interrupt vectors to new loca-
tions. These new vector locations will be used by
“pass-through” bootloader firmware occupying the
hardware vector addresses. For an example memory
map of this design type, see Figure 11 on page 10.

This section discusses how the example application
firmware projects were modified to operate with
bootloader firmware in both design types.

MPLAB® IDE C18 Applications

When using the MPLAB IDE C18 compiler to develop
application firmware, the first Reset vector instruction
generated by the C compiler is, by default, a “GOTO”.
This allows the bootloader to be used with no code
changes required.

The C18 compiler grows application code from the
beginning of program memory space, with minimal
fragmentation. This allows the bootloader firmware, by
default, to stay resident at the end of program memory
space without conflicting with application firmware
code. As a result, it is usually unnecessary to modify
linker scripts to reserve program memory space for the
bootloader firmware.

PIC18 MCC18 REMAPPED APPLICATION
EXAMPLE

Example remapped application firmware for MCC18 on
PIC18 is installed to:

The C code for this project contains all of the necessary
modifications to operate with a bootloader at address,
0h. All of the work is done through C code (see
Example 3).

Note: The example application firmware projects
are intended to communicate via UART1
on the PIC device. Unlike the bootloader
firmware, no auto-baud code is included.

Before compiling, edit the example source
code to provide the correct Baud Rate
Generator (BRG) value, based on the
clock frequency and the baud rate desired.
The source code gives some common
values in commented sections.

C:\Microchip Solutions\Serial
Bootloader AN1310 vX.XX\PIC18 Application\
MCC18 Remapped Application\

AN1310

DS01310A-page 12 2010 Microchip Technology Inc.

There are no assembly language helper files, project build options or customized linker scripts for remapping application
vectors in Example 3. Everything is handled by the code.

EXAMPLE 3: PIC18 REMAPPED APPLICATION C CODE

// Prevent application code from
// being written into FLASH
// memory space needed for the
// Bootloader firmware at
// addresses 0 through 3FFh.
#pragma romdata BootloaderProgramMemorySpace = 0x6
const rom char bootloaderProgramMemorySpace[0x400 - 0x6];

// The routine _startup() is
// defined in the C18 startup
// code (usually c018i.c) and
// is usually the first code to be called by a GOTO at the
// normal reset vector of 0.

extern void _startup(void);

// Since the bootloader isn't
// going to write the normal
// reset vector at 0, we have
// to generate our own remapped
// reset vector at the address
// specified in the
// bootloader firmware.

#pragma code AppVector = 0x400
void AppVector(void)
{

_asm GOTO _startup _endasm
}

// For PIC18 devices the high
// priority interrupt vector is
// normally positioned at
// address 0008h, but the
// bootloader resides there.
// Therefore, the bootloader's
// interrupt vector code is set
// up to branch to our code at
// 0408h.

#pragma code AppHighIntVector = 0x408

void AppHighIntVector(void)
{

_asm GOTO high_isr _endasm // branch to the high_isr()
// function to handle priority
// interrupts.

}

#pragma code AppLowIntVector = 0x418

void low_vector(void)
{

_asm GOTO low_isr _endasm // branch to the low_isr()
// function to handle low
// priority interrupts.

}

#pragma code // return to the default
// code section

 2010 Microchip Technology Inc. DS01310A-page 13

AN1310

HI-TECH C® Applications

The HI-TECH C compiler often fragments application
code into portions of program memory space that con-
flict with the bootloader firmware. To prevent problems
with application code conflicting with bootloader firm-
ware sharing the same device program Flash memory,
the HI-TECH C project must be modified to reserve
program memory space for the bootloader.

The addresses used by the bootloader firmware can be
determined by looking at the Flash memory display
inside the host PC bootloader application. While con-
nected to the bootloader, scroll down to the end of
Flash memory space where you can find the dark
turquoise shaded memory region reserved for the
bootloader (see Figure 12).

FIGURE 12: BOOTLOADER MEMORY,
HIGHLIGHTED

Add the bootloader region to be reserved in the HI-
TECH C project’s “Build Options”, under the Global tab
(see Figure 13).

FIGURE 13: BUILD OPTIONS DIALOG
BOX

Set the “ROM ranges” field to something like the
following:

The word, “default”, tells the compiler to use the entire
Flash program memory space of the device, while the
address range, “-F800-FBFF,” with a minus sign in
front, tells the compiler to exclude addresses, F800h
through FBFFh, from being used for the application
firmware.

This prevents application code from conflicting with the
bootloader code.

Bootloader begins
at address F800h

default,-F800-FBFF

AN1310

DS01310A-page 14 2010 Microchip Technology Inc.

PIC16 HI-TECH C REMAPPED APPLICATION
EXAMPLE

By default, example remapped application firmware for
HI-TECH C on PIC16 devices is installed to:

At first glance, the C code for this project looks pretty
similar to normal application code. However, some
slight changes are made:

• An assembly language helper file (isr.as) is added
to handle Reset and interrupt vector remapping.

This file should be copied into user’s projects and
can be customized with an alternative to the “ORG
0x400” Reset vector address. The 0x400 address
should match the bootloader AppVector setting.

• The Codeoffset option is reset to 404.

The Codeoffset hex number must always be equal
to the application Reset vector plus four
(AppVector + 4). This causes the HI-TECH C com-
piler to generate Reset and interrupt vector code
further into Flash memory space than the default
of address 0.

To verify this, open the project in MPLAB IDE,
select Project>Build Options...>Project and go to
the Linker tab menu.

• To prevent the HI-TECH C compiler from using
the RAM at address, 7Eh and 7Fh, the RAM
ranges option is set to default,-7E-7F

The bootloader uses access bank RAM at 7Eh and
7Fh to pass the PCLATH and WREG registers,
respectively, to the assembly language helper
code in the file, isr.as. The address numbers
used must match the PCLATH_TEMP and
W_TEMP address definitions in the bootloader
firmware source code.

To verify this, open the project in MPLAB IDE,
select Project>Build Options...>Project and go to
the Global tab menu.

• The ROM ranges option is set to prevent the
HI-TECH C compiler from using Flash memory
space from address, 0h, through the end of the
bootloader firmware.

Depending on the size of the bootloader firmware
and write-protected boot block, the end address to
be excluded may be changed to free more Flash
memory for application code.

To verify this, go to the same Global tab menu.

PIC18 HI-TECH C REMAPPED APPLICATION
EXAMPLE

By default, example remapped application firmware for
HI-TECH C on PIC18 is installed to:

The code for this project is normal application code.
There is no need for an assembly language helper file,
as required for PIC16 devices. Instead, only build
options need to be configured.

1. Select Project>Build Options...>Project and go
to the Linker tab menu.

The “Codeoffset” field has been set to 400.

This address must be equal to the bootloader
defined AppVector address in order for the
HI-TECH C compiler to generate Reset and
interrupt vector code further into Flash memory
space than the default of address, 0h.

2. Go to the Global tab menu and review the ROM
ranges field.

This option has been set to prevent the
HI-TECH C compiler from using Flash memory
space from address, 0h, through the end of the
bootloader firmware.

On PIC18 devices, there is no need to exclude RAM
ranges. The PIC18 bootloader does not use any RAM
to save context data when passing through control to
your application’s interrupt vector code.

C:\Microchip Solutions\Serial
Bootloader AN1310 vX.XX\PIC16 Application\
HI-TECH C Remapped Application\

Note: Enhanced architecture PIC16F devices pro-
vide automatic hardware to save and restore
ISR context during interrupt handling. Thus,
it is possible to omit the “RAM ranges”
setting on enhanced core PIC16 devices.

C:\Microchip Solutions\Serial
Bootloader AN1310 vX.XX\PIC18 Application\
HI-TECH C Remapped Application\

Note: If the size of the bootloader firmware and
write-protected boot block permits, the
end address can be adjusted to free more
Flash memory for the application code.
For now, leave the end address as:
default,-0-3FF.

 2010 Microchip Technology Inc. DS01310A-page 15

AN1310

SOFTWARE DESIGN

This section discusses the host PC software and write
planning for the bootloader application.

Host PC Software

The host PC application accepts the following
command-line options:

Software used for building the host PC software
includes:

• Qt SDK 4.x – Lesser General Public License soft-
ware, used unmodified and dynamically linked

• QextSerialPort 1.2 – Public domain software, heavily
modified for this application

• SQLite 3.6.x – Public domain software, used
unmodified

Using only open source and public domain develop-
ment tools/libraries facilitates porting the software to
other operating system platforms, such as Linux®, or
Macintosh®. As of this writing, the software is known to
compile and work on Linux. No testing has been done
for Macintosh.

Write Planning

The original bootloader application, documented in
AN851, used a simple algorithm for writing new
firmware: erase all memory and write all memory with
new data.

With large memory devices, such as the PIC18F87J11,
erasing all of Flash memory can take almost four
seconds, followed by the transferring of 128 Kbytes of
new Flash data at 115.2 kbps, which can take another
11 seconds or more, at lower baud rates.

When developing new application firmware, typically
the target PIC microcontroller has far more Flash
memory than what is needed by application firmware.
As a result, the earlier bootloader’s simple algorithm
can become noticeably inefficient.

This serial bootloader incorporates a different algo-
rithm, “write planning”. The application firmware hex file
is analyzed to produce two lists of memory regions:
Erase and Write. These lists form a “Write Plan” that
the software uses to issue erase and write commands
to the bootloader firmware kernel. For an example
Write Plan, see Table 4.

DEVELOPING THE WRITE PLAN

In the Write Plan process:

1. Regions of Flash memory space are added to
the Write List, aligned to the Flash write block
boundaries. Any blocks of memory that are
found to contain empty data (such as NOPs) are
excluded from being added to the Write List.

2. The Write List is copied to create the Erase List,
except that memory address regions are aligned
to Flash erase block boundaries.

Using Erase and Write Lists makes it easy to re-
order the memory regions to be erased or
written first, for fail-safe operation in case of
interruption during a write operation.

On “J” family devices, where Configuration bits
are stored at the end of Flash memory, the Flash
erase block with Configuration bits is scheduled
to be erased last. The Flash write block contain-
ing the new Configuration bits is scheduled to be
written immediately afterwards, as the first write
transaction.

Scheduling Configuration bits’ erase/write
minimizes the time that Configuration bits could
be left blank on the device.

3. Flash memory is erased in descending order by
the erase block address.

This ensures that being interrupted will force the
bootloader to stay in Bootloader mode on the
next Reset, rather than attempt starting partially
erased application firmware.

Serial Bootloader.exe [/e] [/p] [/v]
[filename.hex]

/e – Erase the device.
/p – Program the device with the specified hex file.
/v – Verify that the device matches the data in the

specified hex file.

TABLE 4: EXAMPLE WRITE PLAN

Erase List

Start Address End Address

1F800h 1F400h

1C00h 0h

20000h 1FC00h

Write List

Start Address End Address

1FFC0h 20000h

0h 1AC0h

1F7C0h 1F800h

http://sourceforge.net/projects/qextserialport
http://www.qtsoftware.com
http://www.sqlite.org

AN1310

DS01310A-page 16 2010 Microchip Technology Inc.

EXECUTING THE WRITE PLAN

After generating the plan, the Erase List is used to
erase all necessary Flash memory and the Write List is
used to rewrite necessary Flash memory.

To prevent leaving “junk” data in previously programmed
Flash memory regions that the new firmware no longer
uses, the following additional steps are taken:

1. The entire Flash memory space is verified by
calculating a 16-bit CCITT CRC against each
Flash erase block, both on the device and on the
host PC.

The calculated CRC values should match,
unless a block on the device contains leftover
junk data that needs to be erased.

2. The host PC compares CRC values calculated
on the device and the desired CRC values
calculated on the host PC. When a block needs
to be erased to match the desired CRC value, it
is added to a new Erase List. If erasing the block
will not make it match the desired CRC value, an
error is displayed.

3. The new Erase List is executed to clear any
leftover junk data from old firmware.

Using CRC numbers enables the bootloader to deal
with junk data without having to transfer the entire
memory contents back to the host PC or resort to
blindly erasing every Flash memory address. This
algorithm significantly speeds up reprogramming of
devices with prior data.

TABLE READS

Some PIC devices provide Configuration bit options for
“Table Read Protect,” which can prevent bootloader
table read operations.

The bootloader firmware needs to be able to perform
table reads for the following operations:

• Read Flash program memory contents

• Generate CRC values to find junk data for final
pass erase

• Generate CRC values to verify correct Flash
memory contents

• Read Device and Revision ID numbers to look up
essential device characteristics database
information

Because this bootloader requires extensive use of
table reads, enabling “Table Read Protect”
Configuration bits is not recommended.

CODE PROTECTION

Some PIC devices provide “Code-Protect” Configura-
tion bit options. Code-protect is intended to prevent
ICSP™ read-out of device memory contents.

When the PIC device is programmed with this boot-
loader firmware, however, code protection can be
easily circumvented. This bootloader performs table
reads on device memory contents whether “code-
protect” Configuration bits are enabled or not. This
could allow the application to be read by an attacker.

For applications where security is a concern, AN1157,
“A Serial Bootloader for PIC24F Devices” (DS01157),
may be more appropriate. An encryption-enabled
version of AN1157 may be ordered from Microchip
sales offices.

SUPPORTING NEW DEVICES

To enable the serial bootloader to keep pace with the
release of new, enhanced microcontrollers, it employs
a SQLite™ database on the host PC. The PC software
quickly reviews device information when connecting to
the bootloader firmware. The database can be updated
without recompiling the host PC software.

The bootloader firmware needs to have the same
adaptability, but obviously can not use a database.
Instead, the bootloader firmware relies on the include
file, DEVICES.INC, to provide device-specific
information at compile time.

With this approach, updating support for a new device
simply requires adding the new device information to
the database and include files, assuming code
compatibility with the new device.

Modifying the SQLite™ Database

By default, the SQL source code to the device
database is installed to:

C:\Microchip Solutions\Serial
Bootloader AN1310 vX.XX\Device Database\
devices.sql

 2010 Microchip Technology Inc. DS01310A-page 17

AN1310

The database currently has two tables: DEVICES and
CONFIGWORDS.

To update the SQLite database for a new device:

1. Add a single DEVICES record, using an SQL
insert statement like that shown in Example 4.

2. If the new device uses configuration fuses, add
records to the CONFIGWORDS table for each
Configuration Word, as shown in Example 5.

This allows the verify operation to mask off un-
used Configuration Word bits to avoid a possible
false verify failure.

3. Regenerate the binary devices.db database
file, used at run time by the host PC software:

• Go to the following command prompt path:

• Run the following command:

The updated devices.db file must be kept in the
same folder as the host PC serial bootloader
executable file.

Modifying the DEVICES.INC Include File

To update the DEVICES.INC file for a new device:

1. In MPLAB IDE, open the bootloader firmware
project file appropriate for the new device.

2. Open the DEVICES.INC file.

3. Add a new #ifdef block for the new device, as
shown in Example 6.

The device numbers in the DEVICES.INC file
must match those used in the SQL database
script (Example 5).

Simplifying Device Data Collection

The device and family numbers required in the preced-
ing examples can be obtained from the devices’ data
sheets, programming specifications and reference
manuals. The data can be acquired more easily, how-
ever, by using Microchip’s XML “essential device
characteristics” files.

These XML files, used to generate the MPLAB
processor-specific header files, MPLAB configuration
screens and other items, are in a compressed file
stored on the host PC during the MPLAB IDE installa-
tion. A “Device Database” utility program can generate
the SQL and include information for new devices.

EXAMPLE 4: SQL INSERT STATEMENT
insert into DEVICES values (
 161, -- Device ID (in decimal)
 4, -- Family ID (2 for PIC16, 4 for
PIC18)
 'PIC18F8722',
 2, -- Bytes Per Word (FLASH)
 64, -- Write FLASH Block Size
 64, -- Erase FLASH Page Size
 '0x0', -- Start address of FLASH
 '0x20000', -- End address of FLASH
 '0xF00000', -- Start address of EEPROM
(use 0 if no EEPROM on your device)
 '0xF00400', -- End address of EEPROM
 '0x200000', -- Start address of User ID
(use 0 if no User ID space on your device)
 '0x200008', -- End address of User ID
 '0x300000', -- Start address of Config
Bits
 '0x30000E', -- End address of Config
Bits
 '0x3FFFFE', -- Start address of Device
Id
 '0x400000', -- End address of Device Id
 '0xFFE0', -- Device Id Mask (so that
Revision ID bits are ignored)
 '0x0', -- Start address of GPR
 '0xF60' -- End address of GPR (tells the
PC software how big packets can be
 -- without overflowing the
device buffer RAM)
);

EXAMPLE 5: CONFIGWORDS ADDITIONS
insert into CONFIGWORDS values (
 161, -- Device ID
 4, -- Family ID
 'CONFIG1H', -- Config Name
 3145729, -- Address
 '0x37', -- Default Value
 '0xCF' -- Implemented Bits
);

insert into CONFIGWORDS values (
 161, -- Device ID
 4, -- Family ID
 'CONFIG2L', -- Config Name
 3145730, -- Address
 '0xFF', -- Default Value
 '0x1F' -- Implemented Bits
);

(...)

C:\Microchip Solutions\Serial
Bootloader AN1310 vX.XX\Device Database

sqlite3.exe -init devices.sql -batch
..\devices.db .quit

EXAMPLE 6: INCLUDE FILE ADDITION
#ifdef __18F8722

#define DEVICEID .161
#define WRITE_FLASH_BLOCKSIZE .64
#define ERASE_FLASH_BLOCKSIZE .64
#define END_FLASH 0x20000
#define END_GPR 0xF60

#endif

AN1310

DS01310A-page 18 2010 Microchip Technology Inc.

To use the utility:

1. Go to the following path and decompress the
bundled XML files.

2. Go to the following path and run the executable
file, Device Database.exe:

The utility’s dialog box appears.

3. Select File>Open PIC Definitions and select the
PIC file(s) for the desired device(s) (for
example, PIC18F6520.PIC).

To generate information for more than one
device, hold down <Ctrl> as you select the
second and subsequent PIC file names, before
clicking the Open button.

The utility displays the device information on the
devices.inc tab, as shown in Figure 14.

FIGURE 14: DEVICE DATABASE UTILITY

REFERENCES

Brant Ivey, AN1157, “A Serial Bootloader for PIC24F
Devices” (DS01157), Microchip Technology Inc., 2008.

Ross M. Fosler and Rodger Richey, AN851, “A FLASH
Bootloader for PIC16 and PIC18 Devices” (DS00851),
Microchip Technology Inc., 2002.

Alternative References

For information on other bootloaders, visit the following
web sites:

• USB bootloaders —
http://www.microchip.com/usb

• TCPIP bootloaders —
http://www.microchip.com/tcpip

• dsPIC® DSCs and 32-bit bootloaders —
http://www.microchip.com/pic32libraries

C:\Program Files\Microchip\
MPLAB IDE\Device*PIC.zip

C:\Microchip Solutions\
Serial Bootloader AN1310 vX.XX\

www.microchip.com/usb
www.microchip.com/pic32libraries
www.microchip.com/tcpip

 2010 Microchip Technology Inc. DS01310A-page 19

AN1310

APPENDIX A: BOOTLOADER
PROTOCOL

The bootloader employs a basic communication protocol
that is robust, simple to use and easy to implement.

Packet Format

All data packets transmitted from the host PC to the
microcontroller follow the basic packet format:

The maximum packet length is constrained by the
microcontroller’s RAM. Host PC software should deter-
mine what device is being used and look up the RAM
size in the essential device characteristics database to
avoid sending more data than can be buffered by the
microcontroller. For a working implementation, see the
example host PC software source code and
Device.cpp and the maxPacketSize() function.

Most response data packets transmitted from the boot-
loader firmware, back to the host PC, follow a similar
basic packet format:

Maximum response packet length is limited by the
number of blocks requested by the host PC software in
the command packet.

Control Characters

There are three control characters that have special
meaning. Two of them, <STX> and <ETX>, are shown
in the previous examples. The remaining character is
“Data Link Escape”, <DLE> (0x05 in hexadecimal).

TABLE 5: CONTROL CHARACTERS

<DLE> is used to escape a byte that could be inter-
preted as a control character. The bootloader will
always accept the byte following a <DLE> as data and
will always send a <DLE> before any of the control
characters. The data payload and CRC bytes will be
escaped by <DLE> characters when the data happens
to match a control character.

The <STX> or “Start of TeXt” control character (0x0F in
hexadecimal) serves multiple purposes: auto-baud,
flow control and packet framing.

For establishing initial communications, the pulse width
of the <STX> character is measured by the bootloader
firmware to calculate the rate at which the host PC is
transmitting data (auto-baud).

The host PC will transmit <STX> characters to the
microcontroller up until the microcontroller echoes
back an <STX> character of its own. The host PC must
not begin transmitting the data payload field until an
echoed <STX> character is received back from the
microcontroller. If data were to be transmitted immedi-
ately, without an echoed <STX> character, data could
be lost because the microcontroller firmware is busy
performing auto-baud or some other task.

The <ETX> or “End of TeXt” control character (0x04 in
hexadecimal) marks the end of the packet. Sending an
extra <ETX> can also be used by the host PC software
to force a baud rate locked bootloader back into its
auto-baud routine. This provides a faster and more reli-
able resynchronization for baud rate changes made on
the host PC.

Cyclic Redundancy Check (CRC)

A 16-bit CCIT CRC algorithm is used to ensure that
received data has not been corrupted by the serial
communication link. A 16-bit CRC may detect bursts of
bad data, up to 15 bits in length, while simple checksum
algorithms can be unreliable at detecting multi-bit
errors.

The 16-bit CCIT CRC algorithm is the same CRC
algorithm specified in the MMC/SD Card SPI protocol
commonly used by embedded applications. A free,
easy-to-use CRC calculator and source code generator
are available from Thomas Pircher’s “pycrc” tool:

http://www.tty1.net/pycrc/

The bootloader firmware and host PC software calcu-
late the CRC against each byte of the data payload,
excluding control characters. If the calculated CRC
does not match the transmitted CRC, the packet is
assumed to be corrupted and is discarded.

The CRC algorithm is doubly useful for quickly verifying
that Flash memory has been programmed correctly.
Calculating CRC values against blocks of Flash mem-
ory can be done much faster than transferring every
byte of Flash memory across a slow serial
communications link.

[<STX>…]<STX>[<DATA>…]<CRCL><CRCH><ETX>[<ETX>]

<...> – Represents a byte
[...] – Represents an optional or variable number

of bytes

[<STX>…]<STX>[<DATA>…]<CRCL><CRCH><ETX>

Control Hex Description

<STX> 0Fh Start of TeXt

<ETX> 04h End of TeXt

<DLE> 05h Data Link Escape

http://www.tty1.net/pycrc/

AN1310

DS01310A-page 20 2010 Microchip Technology Inc.

Bootloader Commands

Read Bootloader Information

Request

PIC18 Response

PIC16 Response

Details

CRC for the request packet is, conveniently, always 0x0000 for this packet.

• VERSION defines the version number of the bootloader firmware.

• BOOTBYTES specifies the boot block size, in bytes.

• STARTBOOT specifies the starting Flash memory address for the boot block.

Together, STARTBOOT and BOOTBYTES are used in the host PC software to color the bootloader Flash memory
region turquoise.

• COMMANDMASK is currently unused on PIC18.

For PIC16, COMMANDMASKH will contain 0x01 if the device implements the erase Flash command. Otherwise, it
contains 0x00, signifying that the PIC16 device does automatic erases during writes (for example, PIC16F88X family).

• FAMILYID is a four-bit number in the least significant nibble, indicating what kind of microcontroller is in use.
Currently used family IDs are: 2 – PIC16, 4 – PIC18.

• DEVICEID is only transmitted for PIC16 devices. It is a compile-time value indicating exactly which PIC16FXXX
part number is being used.

PIC18 parts do not need to transmit the DEVICEID here because the host PC application can use the read Flash
memory command, below, to read the device ID from configuration memory at address 0x3FFFFE.

The host PC application uses the Family ID and Device ID to look up the correct device information in the essential
device characteristics database.

Read Flash Memory

Request

Response

Details

• ADDRESS is the beginning Flash memory address from which to start reading.

• BYTES specifies the number of bytes to read.

<STX> <0x00> <CRCL><CRCH> <ETX>

<STX> <BOOTBYTESL><BOOTBYTESH> <VERSIONL><VERSIONH> <COMMANDMASKH> <COMMANDMASKL:FAMILYID>
<STARTBOOTL><STARTBOOTH><STARTBOOTU><0x00> <CRCL><CRCH> <ETX>

<STX> <BOOTBYTESL><BOOTBYTESH> <VERSIONL><VERSIONH> <COMMANDMASKH> <COMMANDMASKL:FAMILYID>
<STARTBOOTL><STARTBOOTH><STARTBOOTU><0x00> <DEVICEIDL><DEVICEIDH> <CRCL><CRCH> <ETX>

<STX> <0x01> <ADDRESSL><ADDRESSH><ADDRESU><0x00> <BYTESL><BYTESH> <CRCH><CRCL> <ETX>

<STX> [DATA…] <CRCL><CRCH> <ETX>

 2010 Microchip Technology Inc. DS01310A-page 21

AN1310

Read CRCs of Flash Memory

Request

Response

Details

• ADDRESS is the beginning Flash memory address from which to start reading.

• BLOCKS specifies that number of 16-bit CRC words to generate. Each 16-bit CRC is generated on erase Flash
block size number of bytes.

Note that the response packet of this command does not provide a CRC of the data payload, which is a little different
from most of the packets. This allows the bootloader firmware to avoid having to calculate two different CRCs at
the same time, reducing memory use and processing time.

Erase Flash Memory

Request

Response

Details

• ADDRESS is the last Flash memory address to start erasing from. Erases are performed in descending address
order, which is backwards from normal operations.

This feature can help the bootloader to fail more safely in some situations.

• PAGES specifies the number of erase Flash block size pages of Flash memory.

Write Flash Memory

Request

Response

Details

• ADDRESS is the Flash memory address to start writing to. Writes are performed in ascending address order.

• BLOCKS specifies the number of write Flash block size chunks of Flash memory to write.

Flash memory cells must be erased before writing can be performed on the same cells again.

<STX> <0x02> <ADDRESSL><ADDRESSH><ADDRESSU><0x00> <BLOCKSL><BLOCKSH> <CRCL><CRCH> <ETX>

<STX>[<CRC1L><CRC1H>…<CRCnL><CRCnH>]<ETX>

<STX> <0x03> <ADDRESSL><ADDRESSH><ADDRESSU><0x00> <PAGESL> <CRCL><CRCH> <ETX>

<STX> <0x03> <CRCL><CRCH> <ETX>

<STX> <0x04> <ADDRESSL><ADDRESSH><ADDRESSU><0x00> <BLOCKSL> [<DATA>…] <CRCL><CRCH> <ETX>

<STX> <0x04> <CRCL><CRCH> <ETX>

AN1310

DS01310A-page 22 2010 Microchip Technology Inc.

Read EEPROM

Request

Response

Details

• ADDRESS is the beginning EEPROM address from which to start reading.

• BYTES specifies the number of bytes to read.

Microcontrollers that do not have EEPROM immediately send the response packet with a dummy payload of 0x05.

Write EEPROM

Request

Response

Details

• ADDRESS is the EEPROM address to start writing to. Writes are performed in ascending address order.

• BYTES specifies the number of bytes to write to EEPROM.

EEPROM does not require erasing before rewriting, thus, there is no erase command.

Microcontrollers that do not have EEPROM immediately send the response packet without performing any action.

Write Config Fuses

Request

Response

Details

• ADDRESS is the Configuration address to start writing to. Writes are performed in ascending address order.

• BYTES specifies the number of bytes to write.

Config bits do not require erasing before rewriting, so there is no erase command.

Run Application Firmware

Request

Response

None.

Details

This command makes the bootloader jump to the application firmware Reset vector. No response is returned because
the bootloader is no longer active once application firmware is started.

<STX> <0x05> <ADDRESSL><ADDRESSH><0x00><0x00> <BYTESL><BYTESH> <CRCH><CRCL> <ETX>

<STX> [DATA…] <CRCL><CRCH> <ETX>

<STX> <0x06> <ADDRESSL><ADDRESSH><0x00><0x00> <BYTESL><BYTESH> [<DATA>…] <CRCL><CRCH> <ETX>

<STX> <0x06> <CRCL><CRCH> <ETX>

<STX> <0x07> <ADDRESSL><ADDRESSH><0x00><0x00><BYTES> [<DATA>…] <CRCL><CRCH> <ETX>

<STX> <0x07> <CRCL><CRCH> <ETX>

<STX> <0x08> <CRCL><CRCH> <ETX>

 2010 Microchip Technology Inc. DS01310A-page 23

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA
are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01310A-page 24 2010 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/05/10

	Introduction
	AN1310 Bootloader Features
	Prerequisites

	Implementation Basics
	Step 1: Compile and Program Bootloader Firmware
	FIGURE 1: Configuration Bits Dialog Box
	TABLE 1: Configuration Bit Suggestions

	Step 2: Connect Host to Bootloader
	FIGURE 2: Settings Dialog Box
	FIGURE 3: Serial Bootloader Host PC Application

	Step 3: Program Application Firmware
	FIGURE 4: Application Run Mode

	Firmware Overview
	Manual Break and Reset for Re-Entry
	FIGURE 5: Break/Reset Mode
	FIGURE 6: “bootloader Mode” Button

	Software Bootloader Re-Entry
	EXAMPLE 1: Software Bootloader Re-entry

	Hardware Bootloader Re-Entry

	Hardware Considerations
	FIGURE 7: RX Pin Schematic
	FIGURE 8: Mosfet Schematic
	Entering Application Mode
	High-Speed Baud Rates
	TABLE 2: Example High-speed, USB-to-Serial Baud Rates
	TABLE 3: PIC® Device Baud Rate Formulas

	Bootloader Firmware Operation
	FIGURE 9: Bootloader Functional Block Diagram
	Pipelined Reads
	USART Communications

	Bootloader Mode Considerations
	FIGURE 10: Program Memory
	EXAMPLE 2: PIC16 Reset Vector
	Incremental Bootloading
	Write Protection
	Software Write Protection
	Hardware Write Protection
	FIGURE 11: Memory, With Write-Protected Area

	Application Mode Considerations
	MPLAB® IDE C18 Applications
	PIC18 MCC18 Remapped Application Example
	EXAMPLE 3: PIC18 Remapped Application C Code

	HI-TECH C® Applications
	FIGURE 12: Bootloader Memory, Highlighted
	FIGURE 13: Build Options Dialog Box
	PIC16 HI-TECH C Remapped Application Example
	PIC18 HI-TECH C Remapped Application Example

	Software Design
	Host PC Software
	Write Planning
	TABLE 4: Example Write Plan
	Developing the Write Plan
	Executing the Write Plan
	Table Reads
	Code Protection

	Supporting New Devices
	Modifying the SQLite™ Database
	EXAMPLE 4: SQL Insert Statement
	EXAMPLE 5: Configwords Additions

	Modifying the DEVICES.INC Include File
	EXAMPLE 6: INCLUDE FILE ADDITION

	Simplifying Device Data Collection
	FIGURE 14: Device Database Utility

	References
	Alternative References
	Packet Format
	Control Characters
	TABLE 5: Control Characters

	Cyclic Redundancy Check (CRC)
	Bootloader Commands

	Worldwide Sales and Service

