
AN956
Migrating Applications to USB from RS-232 UART with

Minimal Impact on PC Software
INTRODUCTION

The RS-232 serial interface is no longer a common port
found on a personal computer (PC). This is a problem
because many embedded applications use the RS-232
interface to communicate with external systems, such as
PCs. A solution is to migrate the application to the
Universal Serial Bus (USB) interface. There are many
different ways to convert an RS-232 interface to USB,
each requiring different levels of expertise. The simplest
method is to emulate RS-232 over the USB bus. An
advantage of this method is the PC application will see
the USB connection as an RS-232 COM connection and
thus, require no changes to the existing software.
Another advantage is this method utilizes a Windows®

driver included with Microsoft® Windows® 98SE and
later versions, making driver development unnecessary.

The objectives of this application note are to explain
some background materials required for a better under-
standing of the serial emulation over USB method and
to describe how to migrate an existing application to
USB. A device using the implementation discussed in
this document shall be referred to as a USB RS-232
emulated device. The author assumes that the reader
has some basic knowledge of the USB standard. All
references to the USB specification in this document
refer to USB specification revision 2.0.

Features in version 1.0 of the RS-232 Emulation
firmware:

• A relatively small code footprint of 3 Kbytes for the
firmware library

• Data memory usage of approximately 50 bytes
(excluding the data buffer)

• Maximum throughput speed of about 80 Kbytes

• Data flow control handled entirely by the USB
protocol (RS-232 XON/XOFF and hardware flow
control are omitted in this version)

• Does not require additional drivers; all necessary
files, including the .inf files for Microsoft®
Windows® XP and Windows® 2000, are included

OVERVIEW

A Windows application sees a physical RS-232
connection as a COM port and communicates with the
attached device using the CreateFile, ReadFile, and
WriteFile functions. The UART module on the PICmicro®

device provides an embedded device with a hardware
interface to this RS-232 connection. When switching to
USB, the Windows application can see the USB connec-
tion as a virtual COM port via services provided by two
Windows drivers, usbser.sys and ccport.sys.
In-depth details regarding these Windows drivers are
outside the scope of this document. A virtual COM port
provides Windows applications with the same program-
ming interface; therefore, modification to the existing
application PC software is unnecessary.

The areas that do require changes are the embedded
hardware and firmware. For hardware, a micro-
controller with an on-chip full speed USB peripheral is
required to implement this solution. The
PIC18F2455/2550/4455/4550 family of micro-
controllers is used here as an example. References to
the device data sheet in this document apply to
the “PIC18F2455/2550/4455/4550 Data Sheet”
(DS39632).

Firmware modifications to the existing application code
are minimal; only small changes are needed to call the
new USB UART functions provided as part of the USB
firmware framework written in C. Figure 1 shows an
overview of the migration path.

Migrating to USB using the RS-232 serial emulation
method provides the following advantages:

• It has little or no impact on the PC software
application

• It requires minimal changes to the existing
application firmware

• It shortens the development cycle time

• It eliminates the need to support and maintain a
Windows driver which is a very demanding task

• Finally, the method described here utilizes a clear
migration path from many existing PICmicro devices
to the PIC18F2455/2550/4455/4550 family of
microcontrollers, making the upgrade to USB
straightforward

Since the USB protocol already handles the details of
low-level communication, the concept of baud rate,
parity bit and flow control for the RS-232 standard
becomes abstract.

Author: Rawin Rojvanit
Microchip Technology Inc.
 2004 Microchip Technology Inc. DS00956B-page 1

AN956
FIGURE 1: FUNCTIONALLY EQUIVALENT SERIAL COMMUNICATIONS

USB CDC Specification

The Communication Device Class (CDC) specification
defines many communication models, including serial
emulation. All references to the CDC specification in
this document refer to version 1.1. The Microsoft
Windows driver, usbser.sys, conforms to this speci-
fication. Therefore, the embedded device must also be
designed to conform with this specification in order to
utilize this existing Windows driver.

The CDC specification describes an abstract control
model for serial emulation over USB in Section 3.6.2.1.
In summary, two USB interfaces are required. The first
one is the Communication Class interface, using one
IN interrupt endpoint. This interface is used for notifying
the USB host of the current RS-232 connection status
from the USB RS-232 emulated device. The second
one is the Data Class interface, using one OUT bulk
endpoint and one IN bulk endpoint. This interface is
used for transferring raw data bytes that would
normally be transferred over the real RS-232 interface.

Designers do not have to worry about creating descrip-
tors or writing function handlers for Class-Specific
Requests. Descriptors for a USB RS-232 emulated
device and all required handlers for Class-Specific
Requests listed in Table 4 of the CDC specification are
provided with the Microchip USB CDC firmware. A
diagram of the descriptors structure for a USB RS-232
emulated device can be found in Appendix A: “CDC
Descriptor Schema for Serial Emulation”. An exam-
ple of the CDC descriptors can also be found in
Section 5.3 of the CDC specification.

Class-Specific Requests and
Notifications

Microchip USB firmware implements the following
Class-Specific Request handlers as listed in Table 4 of
the CDC specification:

• SEND_ENCAPSULATED_COMMAND
• GET_ENCAPSULATED_COMMAND
• SET_LINE_CODING

• GET_LINE_CODING
• SET_CONTROL_LINE_STATE

More support will be provided in subsequent versions
of the USB UART firmware. Currently, the firmware
does not return any RESPONSE_AVAILABLE notifica-
tion but it returns a NAK instead to tell the host that no
response is available. Refer to Sections 3.6.2.1, 6.2
and 6.3 of the CDC specification for more details.

MICROCHIP USB FIRMWARE:
USB UART FUNCTIONS

All references to the USB UART functions in this docu-
ment refer to functions provided in version 1.0 of the
CDC firmware driver. This driver is provided as part of
the Microchip USB firmware framework. The functions
provided in this library are very similar in functionality to
ones provided in the MPLAB® C18 USART library. The
specific functions are listed in Table 1.

The choice of selecting which function to use depends
on several factors:

• Is the string of data null-terminated?
• Is the length of the data string known?
• Is the data source located in program memory or

in RAM?

RS-232
PIC18

Traditional Method of
Communication using RS-232

COM# COM#

USB

Continue using COM by Emulating
RS-232 over USB

PIC18F4550

Embedded Application

PIC16
or

Embedded Application

Before Migration: After Migration:
DS00956B-page 2 2004 Microchip Technology Inc.

AN956
TABLE 1: SUMMARY OF THE USB UART FUNCTIONS

putrsUSBUSART

putrsUSBUSART writes a string of data to the USB including the null character. Use this version to transfer literal strings
of data, or data located in program memory, to the host.

Note: The transfer mechanism for device-to-host (put) is more flexible than host-to-device (get). It can handle a string
of data larger than the maximum size of the bulk IN endpoint. A state machine is used to transfer a long string
of data over multiple USB transactions. This background service is carried out by CDCTxService().

Syntax:

void putrsUSBUSART(const rom char *data)

Precondition:

mUSBUSARTIsTxTrfReady() must return ‘1’ before this function can be called. The string of characters pointed to by
data must be equal to or smaller than 255 bytes, including the null-terminated character.

Input:

data

Pointer to a null-terminated string of data. If a null character is not found, only the first 255 bytes of data will be
transferred to the host.

Output:

None

Side Effects:

None

Example:

void example_1(void)
{

if(mUSBUSARTIsTxTrfReady())
putrsUSBUSART(“Hello World.”);

}//end example_1

rom char example_string[] = {“Microchip”};
void example_2(void)
{

if(mUSBUSARTIsTxTrfReady())
putrsUSBUSART(example_string);

}//end example_2

Function Description

putrsUSBUSART Write a null-terminated string from program memory to the USB.

putsUSBUSART Write a null-terminated string from data memory to the USB.

mUSBUSARTTxRom Write a string of known length from program memory to the USB.

mUSBUSARTTxRam Write a string of known length from data memory to the USB.

mUSBUSARTIsTxTrfReady Is the driver ready to accept a new string to write to the USB?

getsUSBUSART Read a string from the USB.

mCDCGetRxLength Read the length of the last string read from the USB.
 2004 Microchip Technology Inc. DS00956B-page 3

AN956
putsUSBUSART

putsUSBUSART writes a string of data to the USB including the null character. Use this version to transfer data located
in data memory to the host.

Note: The transfer mechanism for device-to-host (put) is more flexible than host-to-device (get). It can handle a string
of data larger than the maximum size of the bulk IN endpoint. A state machine is used to transfer a long string
of data over multiple USB transactions. This background service is carried out by CDCTxService().

Syntax:

void putsUSBUSART(char *data)

Precondition:

mUSBUSARTIsTxTrfReady() must return ‘1’ before this function can be called. The string of characters pointed to by
data must be equal to or smaller than 255 bytes, including the null-terminated character.

Input:

data

Pointer to a null-terminated string of data. If a null character is not found, only the first 255 bytes of data will be
transferred to the host.

Output:

None

Side Effects:

None

Example:

char example_string[4];
void example_1(void)
{

example_string[0]=’U’;
example_string[1]=’S’;
example_string[2]=’B’;
example_string[3]=0x00;
if(mUSBUSARTIsTxTrfReady())

putsUSBUSART(example_string);
}//end example_1
DS00956B-page 4 2004 Microchip Technology Inc.

AN956
mUSBUSARTTxRom

Use this macro to transfer data located in program memory. The length of data to be transferred must be known and
passed in as a parameter.

The response of this function is undefined if it is called when mUSBUSARTIsTxTrfReady() returns ‘0’.

Note: This macro only handles the setup of the transfer. The actual transfer is handled by CDCTxService().

Syntax:

void mUSBUSARTTxRom(rom byte *pData, byte len)

Precondition:

mUSBUSARTIsTxTrfReady() must return ‘1’ before this function can be called. Value of len must be equal to or
smaller than 255 bytes.

Input:

pDdata

Pointer to the starting location of data bytes.

len

Number of bytes to be transferred.

Output:

None

Side Effects:

None

Example:

rom char example_string[] = {0x31,0x32,0x33};
void example_1(void)
{

if(mUSBUSARTIsTxTrfReady())
mUSBUSARTTxRom((rom byte*)example_string,3);

}//end example_1
 2004 Microchip Technology Inc. DS00956B-page 5

AN956
mUSBUSARTTxRam

Use this macro to transfer data located in data memory. The length of data to be transferred must be known and passed
in as a parameter.

The response of this function is undefined if it is called when mUSBUSARTIsTxTrfReady() returns ‘0’.

Note: This macro only handles the setup of the transfer. The actual transfer is handled by CDCTxService().

Syntax:

void mUSBUSARTTxRam(byte *pData, byte len)

Precondition:

mUSBUSARTIsTxTrfReady() must return ‘1’ before this function can be called. Value of len must be equal to or
smaller than 255 bytes.

Input:

pDdata

Pointer to the starting location of data bytes.

len

Number of bytes to be transferred.

Output:

None

Side Effects:

None

Example:

char example_string[3];
void example_1(void)
{

example_string[0] = ‘U’;
example_string[1] = ‘S’;
example_string[2] = ‘B’;
if(mUSBUSARTIsTxTrfReady())

mUSBUSARTTxRam((byte*)example_string,3);
}//end example_1
DS00956B-page 6 2004 Microchip Technology Inc.

AN956
mUSBUSARTIsTxTrfReady

This macro is used to check if the CDC class is ready to send more data.

Typical Usage: if(mUSBUSARTIsTxTrfReady())

Note: Do not call this macro as a blocking function (i.e., while(!mUSBUSARTIsTxTrfReady());).

Syntax:

BOOL mUSBUSARTIsTxTrfReady(void)

Precondition:

None

Input:

None

Output:

BOOL

 If the firmware driver is ready to receive a new string of data to write to USB, it will return ‘1’, else it will return ‘0’.

Side Effects:

None

Example:

void example_1(void)
{

if(mUSBUSARTIsTxTrfReady())
putrsUSBUSART(“Microchip”);

}//end example_1
 2004 Microchip Technology Inc. DS00956B-page 7

AN956
getsUSBUSART

getsUSBUSART copies a string of bytes received through USB CDC bulk OUT endpoint to a user’s specified location.
It is a non-blocking function. It does not wait for data if there is no data available. Instead, it returns ‘0’ to notify the caller
that there is no data available.

Note: If the actual number of bytes received is larger than the number of bytes expected (len), only the expected
number of bytes specified will be copied to buffer. If the actual number of bytes received is smaller than the
number of bytes expected (len), only the actual number of bytes received will be copied to the buffer.

Syntax:

byte getsUSBUSART(char *buffer, byte len)

Precondition:

Value of input argument, len, should be equal to or smaller than the maximum endpoint size responsible for receiving
bulk data from USB host for CDC class.

This maximum endpoint size value is defined as CDC_BULK_OUT_EP_SIZE and is found in the file usbcfg.h.

CDC_BULK_OUT_EP_SIZE could be equal to 8, 16, 32 or 64 bytes.

Input argument buffer should point to a buffer area that is bigger or equal to the size specified by len.

Input:

buffer

Pointer to where received bytes are to be stored.

len

The number of bytes expected.

Output:

byte

The number of bytes copied to the buffer.

Side Effects:

Publicly accessible variable cdc_rx_len is updated with the number of bytes copied to buffer. Once getsUSBUSART
is called, subsequent retrieval of cdc_rx_len can be done by calling macro mCDCGetRxLength().

Example:

char input_buffer[64];
void example_1(void)
{

byte index, count, total_sum;
if(getsUSBUSART(input_buffer, 8)
{

count = mCDCGetRxLength();
total_sum = 0;
for(index = 0; index < count; index++)

total_sum += input_buffer[index];
}//end if

}//end example_1

void example_2(void)
{

if(getsUSBUSART(input_buffer, CDC_BULK_OUT_EP_SIZE)
{

// Do something…
}//end if

}//end example_2
DS00956B-page 8 2004 Microchip Technology Inc.

AN956
mCDCGetRxLength

mCDCGetRxLength is used to retrieve the number of bytes copied to user’s buffer by the most recent call to
getsUSBUSART function.

Macro:

byte mCDCGetRxLength(void)

Precondition:

None

Input:

None

Output:

byte

mCDCGetRxLength returns the number of bytes copied to user’s buffer from the last call to getsUSBUSART.

Side Effects:

None

Example:

char input_buffer[64];
void example_1(void)
{

if(getsUSBUSART(input_buffer, 2)
{

// Do something with input_buffer[0]

if(mCDCGetRxLength() == 2)

// Do something with input_buffer[1]
}//end if

}//end example_1
 2004 Microchip Technology Inc. DS00956B-page 9

AN956
Important Things to Know When Using
the USB UART Functions

While the provided USB UART functions greatly sim-
plify the integration of USB into an application, there
are still some considerations to keep in mind when
developing or modifying application code.

CODE DESIGN

1. The Microchip USB firmware is a cooperative
multitasking environment. There should not be
any blocking functions in the user code. As USB
tasks are polled and serviced in the main
program loop, any blocking functions that are
dependent on the state of the USB may cause a
deadlock. Use a state machine in place of a
blocking function.

2. mUSBUSARTTxRom and mUSBUSARTTxRam expect
a data pointer of type rom byte* and byte*,
respectively. Type casting may be necessary.

3. while(!mUSBUSARTIsTxTrfReady()); is a
blocking function. Do not use it.

4. putrsUSBUSART, putsUSBUSART,
mUSBUSARTTxRom and mUSBUSARTTxRam are
not blocking functions. They do not send out
data to the USB host immediately, nor wait for
the transmission to complete. All they do is set
up the necessary Special Function Registers
and state machine for the transfer operation.

The routine that actually services the transfer of
data to the host is CDCTxService(). It keeps
track of the state machine and breaks up long
strings of data into multiple USB data packets. It
is called once per main program loop in the
USBTasks() service routine. (The state
machine for CDCTxService() is shown in
Appendix B: “CDC State Machine”.)

Because of this, back-to back function calls will
not work; each new call will override the pending
transaction. The correct way of sending consec-
utive strings is to use a state machine, as shown
in Example 1. An alternative to using a state
machine is to use a global intermediate buffer,
as shown in Example 2.

5. A correct set of descriptors for the CDC class
must be used. Refer to the reference design
project for an example.

6. The endpoint size for the data pipes are defined
by CDC_BULK_OUT_EP_SIZE and
CDC_BULK_IN_EP_SIZE, located in the
header file usbcfg.h. Since these endpoints
are of type bulk, the maximum endpoint size
described must either be 8, 16, 32 or 64 bytes.

7. The type byte is defined as an unsigned
char in the header file typedefs.h.

8. Always check whether the firmware driver is
ready to send more data out to the USB host by
calling mUSBUSARTIsTxTrfReady().

EXAMPLE 1: CORRECT USE OF USB
UART FUNCTION CALLS

EXAMPLE 2: ALTERNATIVE GLOBAL
BUFFER METHOD

SETTING UP THE CODE PROJECT

1. Insert #include "system\usb\usb.h" in
each file that uses the CDC functions.

2. USB_USE_CDC should be defined in the file
usbcfg.h when using the CDC functions.

3. The source and header files, cdc.c and cdc.h,
should be added to the project source files. They
can be found in the directory
“system\usb\class\cdc\”.

Incorrect Method (back-to-back calls):

if(mUSBUSARTIsTxTrfReady())
{
 putrsUSBUSART(“Hello World”);
 putrsUSBUSART(“Hello Again”);
}//end if

Correct Method (state machine):

byte state = 0;
if(state == 0)
{
 if(mUSBUSARTIsTxTrfReady())
 {
 putrsUSBUSART(“Hello World”);
 state++;
 }//end if
}
else if(state == 1)
{
 if(mUSBUSARTIsTxTrfReady())
 {
 putrsUSBUSART(“Hello Again”);
 state++;
 }//end if
}//end if

char io_buffer[64];
. . .
// Main Program Loop
while(1)
{

USBTasks();
if (mUSBUSARTIsTxTrfReady())

putsUSBUSART(io_buffer);
// SendToBuffer attachs multiple
// strings together
// (The user will need to provide
// their own SendToBuffer function)
SendToBuffer(“Hello World”);
SendToBuffer(“Hello Again”);

}// end while
DS00956B-page 10 2004 Microchip Technology Inc.

AN956
USB Vendor ID (VID) and Product ID (PID)

The VID and PID are important because they are used
by the Windows operating system to differentiate USB
devices and to determine which device driver is to be
used. The VID is a 16-bit number assigned by the USB
Implementers Forum (USB-IF). It must be obtained by
each manufacturer that wants to market and sell USB
products. The VID can be purchased directly from
USB-IF. More detailed information can be found at:
http://www.usb.org/developers/vendor.

Each VID comes with 65,536 different PIDs which is
also a 16-bit number. In the Microchip USB firmware
framework, the VID and PID are located in the file
usbdsc.c. Both values can be modified to match
different product VID and PID numbers.

Drivers for Microsoft Windows® 2000 and
Windows® XP

Microsoft Windows does not have a standard .inf file
for the CDC driver. The drivers are, however, part of the
Windows installation. The only thing necessary to do is
to provide an .inf file when a CDC device is first
connected to a Windows system.

Example .inf files are provided with the CDC RS-232
Emulation Reference Project and are located in the
source code directory <Install>\fw\CDC\inf.
Before using them, they must be modified to reflect the
application’s specific VID and PID. This is in addition to
any changes to usbdsc.c that have already been
made and must match those values. The VID and PID
are located in the string “USB\VID_xxxx&PIDyyyy”,
where “xxxx” is the hexadecimal VID and “yyyy” is the
hexadecimal PID. The string is generally part of one of
the lines under the heading “[DeviceList]”.

If desired, users may also modify the variable defini-
tions under the heading “[Strings]”. This changes
the device identification text seen by the user in the
device manager.

SUMMARY

The RS-232 serial emulation provides an easy migration
path for applications moving from UART to USB. On
the PC side, it requires minimal software modification.
On the embedded device side, the
PIC18F2455/2550/4455/4550 family of microcontrollers
provides a simple hardware upgrade path from the
PIC16C745/765 and PIC18FXX2 families of devices.
Library firmware with user-friendly APIs are also
included for convenience. Tutorial exercises are avail-
able as part of the CDC RS-232 Emulation Reference
Project.

REFERENCES

“PIC18F2455/2550/4455/4550 Data Sheet” (DS39632),
Microchip Technology Inc., 2004.

“USB Specification Revision 2.0”, USB Implementers
Forum Inc., 2000.

“USB Class Definitions for Communication Devices
Version 1.1”, USB Implementers Forum Inc., 1999.
 2004 Microchip Technology Inc. DS00956B-page 11

AN956
APPENDIX A: CDC DESCRIPTOR SCHEMA FOR SERIAL EMULATION

FIGURE A-1: EXAMPLE OF A DESCRIPTOR SET FOR SERIAL EMULATION

Device
bDeviceClass = 0x02

Configuration 1

Interface 0
bInterfaceClass = 0x02

bInterfaceSubClass = 0x02
bInterfaceProtocol = 0x01

Interface 1
bInterfaceClass = 0x0A

bInterfaceSubClass = 0x00
bInterfaceProtocol = 0x00

Endpoint 2 IN
Interrupt 8-byte

Endpoint 3 IN
Bulk 8, 16, 32, 64-byte

Endpoint 3 OUT
Bulk 8, 16, 32, 64-byte

Header Functional
bDescriptorType = 0x24

bDescriptorSubtype = 0x00
bcdCDC = 0x0110

Call Management Functional
bDescriptorType = 0x24

bDescriptorSubtype = 0x01
bmCapabilities = 0x00
bDataInterface = 0x01

Abstract Control
Management Functional
bDescriptorType = 0x24

bDescriptorSubtype = 0x02
bmCapabilities = 0x02

Union Functional
bDescriptorType = 0x24

bDescriptorSubtype = 0x06
bMasterInterface = 0x00
bSlaveInterace0 = 0x01
DS00956B-page 12 2004 Microchip Technology Inc.

AN956
APPENDIX B: CDC STATE MACHINE

FIGURE B-1: DIAGRAM OF THE CDCTxService() STATE MACHINE

APPENDIX C: SOURCE CODE

Because of its size, the complete source code for this
application note is not included in this text. You may
download the complete source code, including all
necessary files and the Microsoft Windows .inf file,
from the Microchip web site at the internet address:

www.microchip.com

APPENDIX D: NOTE ON THE CDC
RS-232 EMULATION
TUTORIAL

The CDC RS-232 Emulation Reference Project
provides a complete demonstration of the application
discussed in this document, as well as a tutorial for
developing applications. The tutorial exercises are writ-
ten specially for the PICDEM™ FS USB Demo Board.
Modifications can be made to run the source project on
a different platform. The tutorial is included as part of
the source code project. Refer to the user.c file in the
project for more information.

When using the HyperTerminal program in Microsoft
Windows, physically or electrically reconnecting the
USB device causes the Windows operating system to
assign a new driver handler for that particular device,
thus causing any applications that have the path to the
old handle to stop communicating. In HyperTerminal,
hanging up the connection before disconnecting the
device allows the program to re-enumerate the device
COM port and therefore, reference the correct driver
handler.

CDC_TX_BUSY_ZLPCDC_TX_COMPLETING

CDC_BULK_BD_IN.Cnt == 0

mCDCUsartTxIsBusy() == 0

CDC_TX_BUSYCDC_TX_READY

cdc_tx_len == 0
CDC_BULK_BD_IN.Cnt == Max EP Size

cdc_tx_len == 0
CDC_BULK_BD_IN.Cnt < Max EP Size

cdc_tx_len ! = 0
 2004 Microchip Technology Inc. DS00956B-page 13

AN956
NOTES:
DS00956B-page 14 2004 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.
 2004 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,
MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,
PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB,
rfPICDEM, Select Mode, Smart Serial, SmartTel and Total
Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2004, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00956B-page 15

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00956B-page 16 2004 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westford, MA
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Qingdao
Tel: 86-532-502-7355
Fax: 86-532-502-7205

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

Japan - Kanagawa
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

EUROPE
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Ballerup
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Massy
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

10/20/04

	Introduction
	Overview
	FIGURE 1: Functionally Equivalent Serial Communications
	USB CDC Specification
	Class-Specific Requests and Notifications

	Microchip USB Firmware: USB UART Functions
	TABLE 1: Summary of the USB UART Functions
	Important Things to Know When Using the USB UART Functions
	Code Design
	EXAMPLE 1: Correct Use of USB UART Function Calls
	EXAMPLE 2: Alternative Global Buffer Method

	Setting Up the Code Project

	USB Vendor ID (VID) and Product ID (PID)
	Drivers for Microsoft Windows® 2000 and Windows® XP

	Summary
	References
	Appendix A: CDC Descriptor Schema for Serial Emulation
	FIGURE A-1: Example of a Descriptor Set for Serial Emulation

	Appendix B: CDC State Machine
	FIGURE B-1: Diagram of the CDCTxService() State Machine

	Appendix C: Source Code
	Appendix D: Note on the CDC RS-232 Emulation Tutorial
	Worldwide Sales and Service

